|
楼主 |
发表于 2022-4-20 20:53:56
|
显示全部楼层
2020年5月2日写出:整数数列里,任意一组相邻两数的4次幂值的求差公式【通项公式】
【1】
【n×[n+1]×3+1】×n+[n+1]³
2020年6月3日写出
【2】
【n×[n+1]×3+1】×[n+1]+n³
今年6月14日端午节写出:
【3】奇数或偶数数列里,任意一组相邻两数的2次幂值的求差公式【通项公式】
[n+1]×4
【4】奇数或偶数数列里,任意一组相邻两数的3次幂值的求差公式【通项公式】[n+2]×[n+1]×4+n²×2
6月20日晚上写出
【5】奇数或偶数数列里,任意一组相邻两数的4次幂值的求差公式【通项公式】【[n+2]×[n+1]×4+n²×2】×n +【n³ + [n+2]×[n+1]×4+n²×2】×2
6月21日早上,把长长的式子裁了一截,变短了
【6】
【[n+2]×[n+1]×4+n²×2】×n + [n+2]³×2
7月12日下午,小区扫地,天太热,躲到阴凉处,拿出垃圾堆里捡来的本子与笔,又开始想问题,写公式。
写出
【7】奇数或偶数数列里,任意一组相邻两数的3次幂值的求差公式【通项公式】[n+1]×[n+1]×6+2
晚上写出
【8】奇数或偶数数列里,任意一组相邻两数的4次幂值的求差公式【通项公式】【[n+1]×[n+1]×6+2】×n+【n³+【[n+1]×[n+1]×6+2】×2
【9】
【[n+1]×[n+1]×6+2】×n+[n+2]³×2
2021年12月29日,写出:
[n+2]×2+n×2
今天2022年3月28日下午,在扫地时又想出一种推导方法,是馍夹肉式,【三明治,汉堡】。先上下两面夹住,再填补两个夹面之间的周缝。
第三种
[n+2]²×2+[n²+n]×4
2022,4,20
升级到5次幂值的
四个式子,只是推导方法不同,结果相同。
【[n+2]×[n+1]×4+n²×2】×n² +【n³ + [n+2]×[n+1]×4+n²×2】×【[n+2]²-n²】
【[n+2]²×2+[n²+n]×4】×n²+【n³+[n+2]²×2+[n²+n]×4】×【[n+2]²-n²】
【[n+1]×[n+1]×6+2】×n²+【n³+[n+1]×[n+1]×6+2】×【[n+2]²-n²】
【[n+1]²×6+2】×n²+【n³+[n+1]²×6+2】×【[n+2]²-n²】【最简短的】 |
|